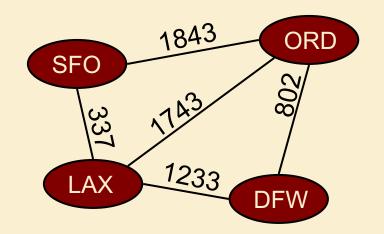
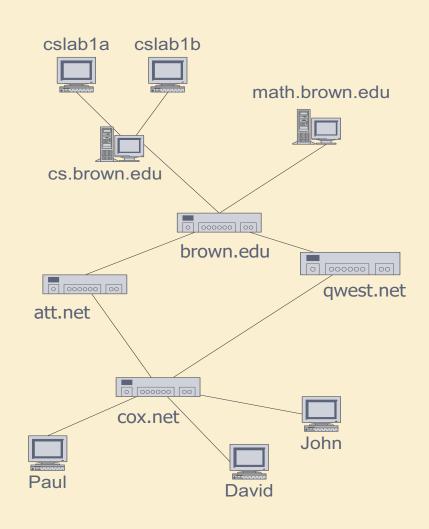
Graphs – ADTs and Implementations



Applications of Graphs

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - ☐ Highway network
 - ☐ Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - ☐ Entity-relationship diagram



Outcomes

- > By understanding this lecture, you should be able to:
 - ☐ Define basic terminology of graphs.
 - ☐ Use a graph ADT for appropriate applications.
 - □ Program standard implementations of the graph ADT.
 - ☐ Understand advantages and disadvantages of these implementations, in terms of space and run time.

Outline

- Definitions
- Graph ADT
- Implementations

Outline

- Definitions
- Graph ADT
- Implementations

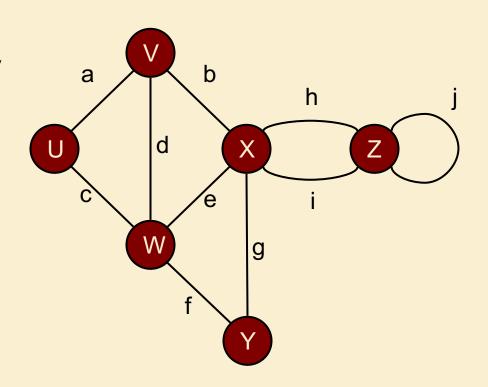
Edge Types

- Directed edge
 - \Box ordered pair of vertices (u,v)
 - \Box first vertex u is the origin
 - \square second vertex v is the destination
 - □ e.g., a flight
- Undirected edge
 - \square unordered pair of vertices (u,v)
 - □ e.g., a flight route
- Directed graph (Digraph)
 - all the edges are directed
 - □ e.g., route network
- Undirected graph
 - all the edges are undirected
 - □ e.g., flight network

EECS 2011 Prof. J. Elder

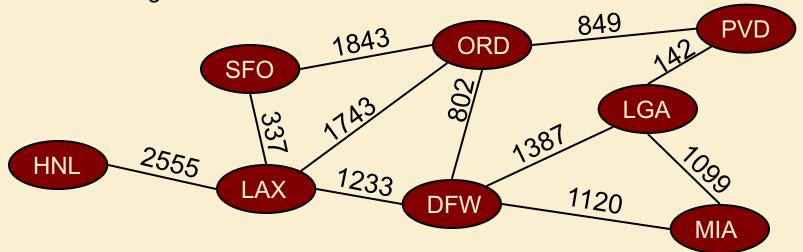
Vertices and Edges

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - □ a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - ☐ X has degree 5
- Parallel edges
 - ☐ h and i are parallel edges
- Self-loop
 - ☐ j is a self-loop



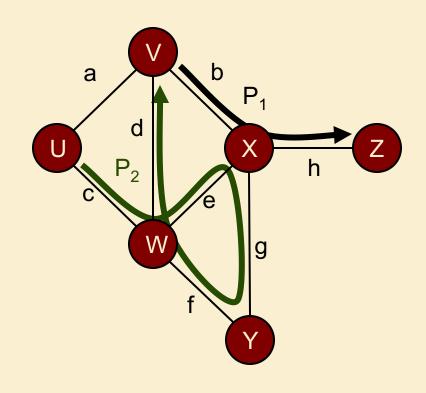
Graphs

- \triangleright A graph is a pair (V, E), where
 - \square *V* is a set of nodes, called vertices
 - \square *E* is a collection of pairs of vertices, called edges
 - ☐ Vertices and edges are positions and store elements
- > Example:
 - ☐ A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route



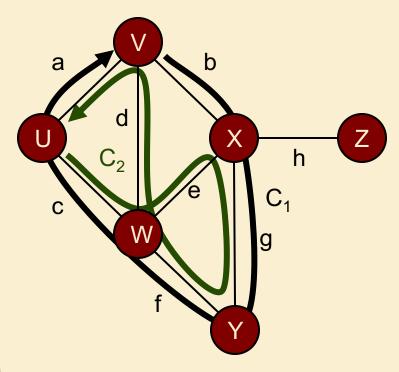
Paths

- > Path
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - \square P₁=(V,b,X,h,Z) is a simple path
 - \square P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple



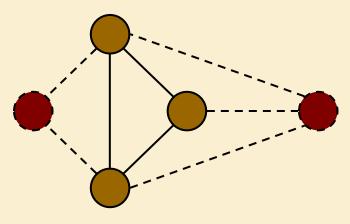
Cycles

- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct (except for its first and last vertex)
- Examples
 - \Box C₁=(V,b,X,g,Y,f,W,c,U,a,V) is a simple cycle
 - \square C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is a cycle that is not simple

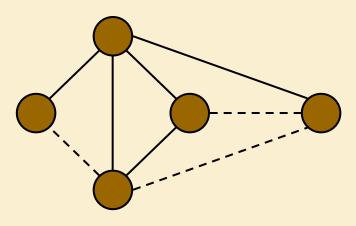


Subgraphs

- A subgraph S of a graphG is a graph such that
 - ☐ The vertices of S are a subset of the vertices of G
 - ☐ The edges of S are a subset of the edges of G
- A spanning subgraph of
 G is a subgraph that
 contains all the vertices of
 G



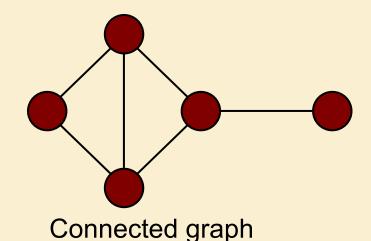
Subgraph

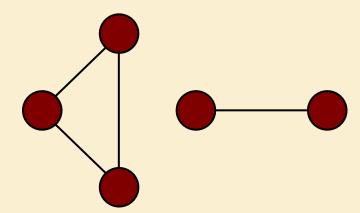


Spanning subgraph

Connectivity

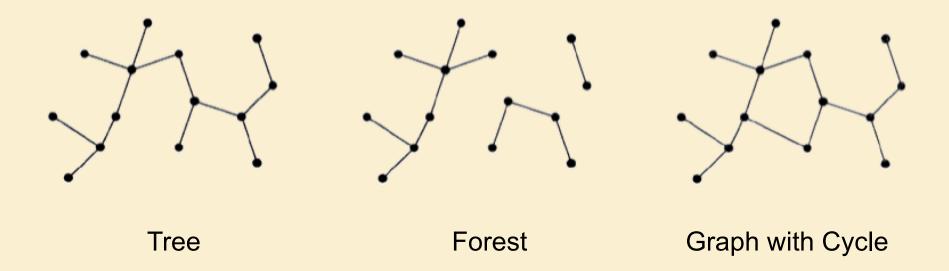
- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G





Non connected graph with two connected components

Trees

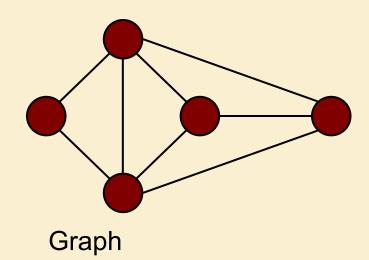


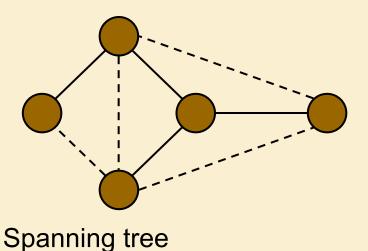
A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

Spanning Trees

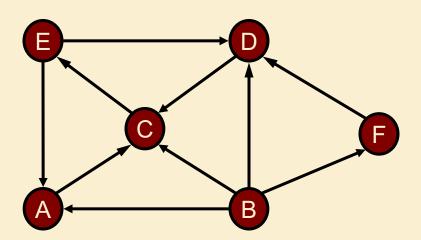
- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest





Reachability in Directed Graphs

- ➤ A node w is **reachable** from v if there is a directed path originating at v and terminating at w.
 - ☐ E is reachable from B
 - ☐ B is not reachable from E



Properties

Property 1

$\Sigma_v \deg(v) = 2|E|$

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no parallel edges

$$|E| \le |V| (|V| - 1)/2$$

Proof: each vertex has degree at most (|V| - 1)

Q: What is the bound for a digraph?

$$A: |E| \leq |V|(|V|-1)$$

YORK EECS 2011 Prof. J. Elder

Notation

|V|

number of vertices number of edges

|E|

deg(v) degree

degree of vertex v

Example

$$|V|=4$$

■
$$|E| = 6$$

$$\bullet \quad \deg(\mathbf{v}) = 3$$

Outline

- Definitions
- Graph ADT
- Implementations

Main Methods of the Graph ADT

> Accessor methods

- unmVertices(): Returns the number of vertices in the graph
- unumEdges(): Returns the number of vertices in the graph
- □getEdge(u, v): Returns edge from u to v
- □endVertices(e): an array of the two endvertices of e
- popposite(v, e): the vertex opposite to v on e
- DoutDegree(v): Returns number of outgoing edges
- □inDegree(v): Returns number of incoming edges

Main Methods of the Graph ADT

Update methods

- □insertVertex(x): insert a vertex storing element x
- □insertEdge(u, v, x): insert an edge (u,v) storing element x
- □removeVertex(v): remove vertex v (and its incident edges)
- □removeEdge(e): remove edge e

Main Methods of the Graph ADT

> Iterator methods

- □incomingEdges(v): Incoming edges to v
- DoutgoingEdges(v): Outgoing edges from v
- vertices(): all vertices in the graph
- □edges(): all edges in the graph

Outline

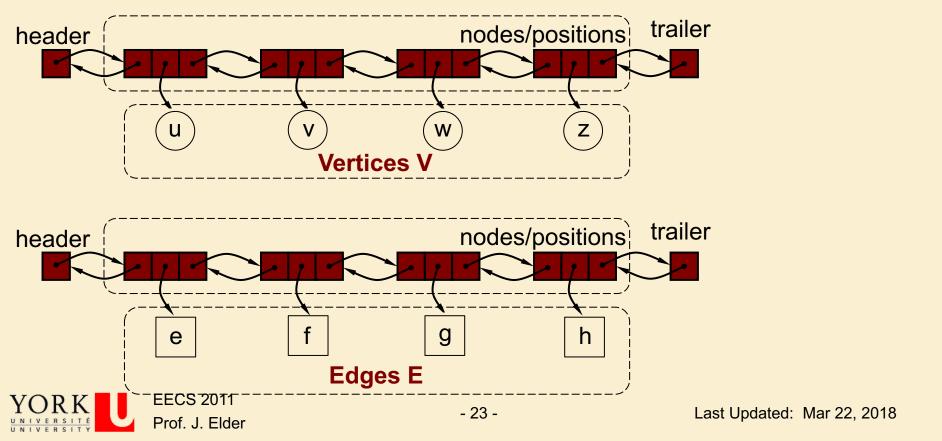
- Definitions
- Graph ADT
- > Implementations

GTG Implementation (net.datastructures)

- There are many ways to implement the Graph ADT.
- We will follow the textbook implementation.

Vertex and Edge Lists

- A graph consists of a collection of vertices V and a collection of edges E.
- Each of these will be represented as a Positional List (Ch.7.3).
- In net.datastructures, Positional Lists are implemented as doubly-linked lists.



End of Lecture

Mar 22, 2018

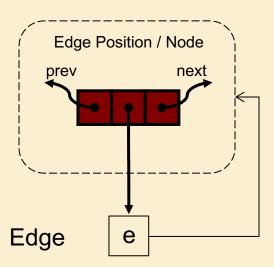
Vertices and Edges

- Each vertex v stores an element containing information about the vertex.
 - ☐ For example, if the graph represents course dependencies, the vertex element might store the course number.
- Each edge e stores an element containing information about the edge.
 - e.g., pre-requisite, co-requisite.
- In addition, each edge must store references to the vertices it connects.

Vertices and Edges

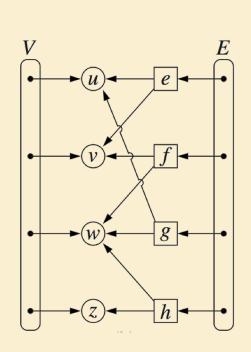
- ➤ To facilitate efficient removal of vertices and edges, we will make both location aware:
 - ☐ A reference to the Position in the Positional List will be stored in the element.

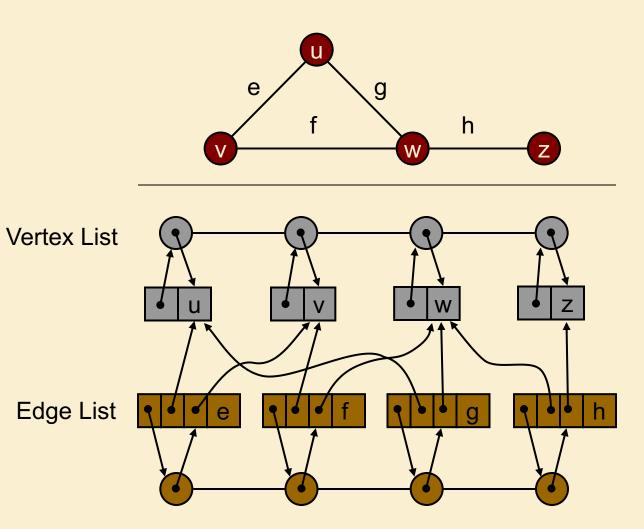




Edge List Implementation

> This organization yields an Edge List Structure





Performance of Edge List Implementation

Edge List implementation does not provide efficient access to edge information from vertex list.

 n vertices, m edges no parallel edges no self-loops 	Edge List
Space	n+m
incomingEdges(v) outgoingEdges(v)	m
getEdge(u, v)	m
insertVertex(x)	1
insertEdge(u, v, x)	1
removeVertex(v)	m
removeEdge(e)	1

Other Graph Implementations

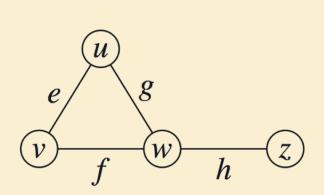
- Can we come up with a graph implementation that improves the efficiency of these basic operations?
 - □ Adjacency List
 - □ Adjacency Map
 - □ Adjacency Matrix

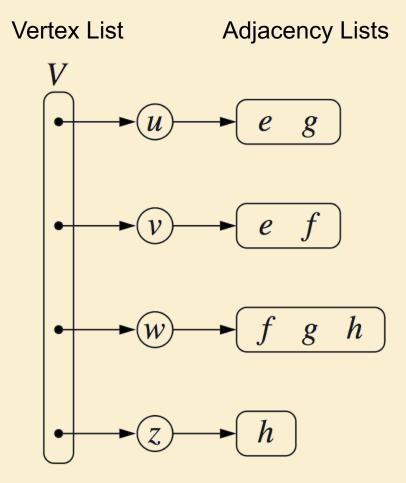
Other Graph Implementations

- Can we come up with a graph implementation that improves the efficiency of these basic operations?
 - □ Adjacency List
 - □ Adjacency Map
 - □ Adjacency Matrix

Adjacency List Implementation

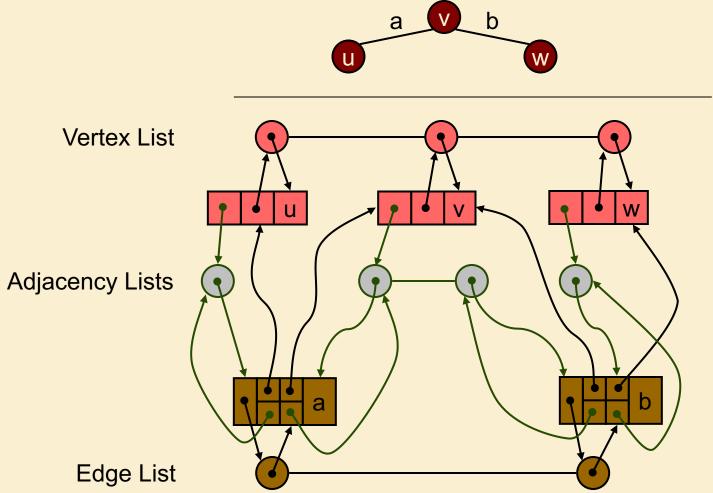
An Adjacency List implementation augments each vertex element with Positional Lists of incoming and outgoing edges.





Adjacency List Implementation

An Adjacency List implementation augments each vertex element with lists of incoming and outgoing edges.



Performance of Adjacency List Implementation

Adjacency List implementation improves efficiency without increasing space requirements.

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List
Space	n+m	n + m
incomingEdges(v) outgoingEdges(v)	m	deg(v)
getEdge(u, v)	m	$\min(\deg(u), \deg(v))$
insertVertex(x)	1	1
insertEdge(u, v, x)	1	1
removeVertex(v)	m	deg(v)
removeEdge(e)	1	1

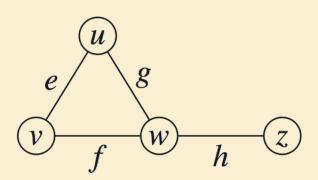
EECS 2011 Prof. J. Elder

Other Graph Implementations

- Can we come up with a graph implementation that improves the efficiency of these basic operations?
 - □ Adjacency List
 - □ Adjacency Map
 - □ Adjacency Matrix

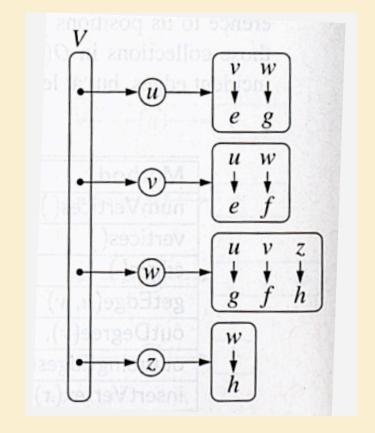
Adjacency Map Implementation

- An Adjacency Map implementation augments each vertex element with an Adjacency Map of edges
 - ☐ Each entry consists of:
 - ♦ Key = opposite vertex
 - ♦ Value = edge
 - Implemented as a hash table.



Vertex List

Adjacency Maps



Performance of Adjacency Map Implementation

Adjacency Map implementation improves expected run time of getEdge(u,v):

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Map
Space	n+m	n + m	n+m
incomingEdges(v), outgoingEdges(v)	m	$\deg(v)$	$\deg(v)$
getEdge(u, v)	m	$\min(\deg(u), \deg(v))$	1 (exp.)
insertVertex(x)	1	1	1
insertEdge(u, v, x)	1	1	1 (exp.)
removeVertex(v)	m	$\deg(v)$	deg(v)
removeEdge(e)	1	1	1 (exp.)

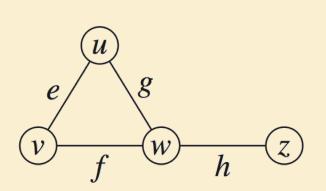
EECS 2011 Prof. J. Elder

Other Graph Implementations

- Can we come up with a graph implementation that improves the efficiency of these basic operations?
 - □ Adjacency List
 - □ Adjacency Map
 - □ Adjacency Matrix

Adjacency Matrix Implementation

- In an Adjacency Matrix implementation we map each of the n vertices to an integer index from [0...n-1].
- Then a 2D n x n array A is maintained:
 - ☐ If edge (i, j) exists, A[i, j] stores a reference to the edge.
 - ☐ If edge (i, j) does not exist, A[i, j] is set to null.



Vertex List

Adjacency Matrix $\begin{array}{c|cccc}
0 & 1 & 2 & 3 \\

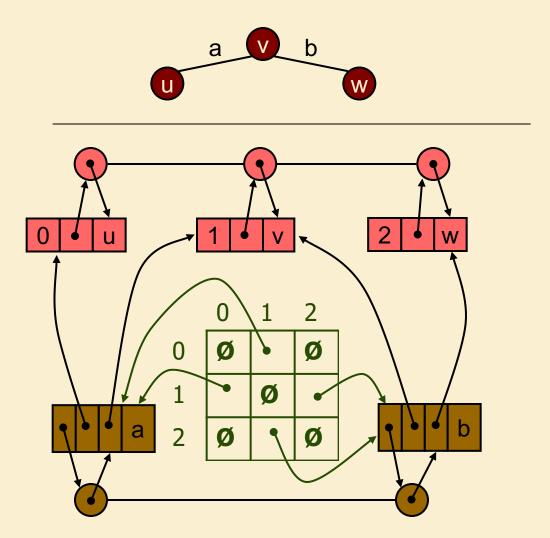
u & \longrightarrow & 0 & e & g \\

v & \longrightarrow & 1 & e & f \\

w & \longrightarrow & 2 & g & f & h \\

z & \longrightarrow & 3 & h & h
\end{array}$

Adjacency Matrix Structure



Performance of Adjacency Matrix Implementation

- Requires more space.
- Slow to get incoming / outgoing edges
- Very slow to insert or remove a vertex (array must be resized)

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Map	Adjacency Matrix
Space	n+m	n+m	n+m	n^2
incomingEdges(v), outgoingEdges(v)	m	$\deg(v)$	$\deg(v)$	n
getEdge(u, v)	m	$\min(\deg(\boldsymbol{u}), \deg(\boldsymbol{v}))$	1 (exp.)	1
insertVertex(x)	1	1	1	n^2
insertEdge(u, v, x)	1	1	1 (exp.)	1
removeVertex(v)	m	$\deg(v)$	$\deg(v)$	n^2
removeEdge(e)	1	1	1 (exp.)	1

Outline

- Definitions
- Graph ADT
- Implementations

Outcomes

- By understanding this lecture, you should be able to:
 - ☐ Define basic terminology of graphs.
 - ☐ Use a graph ADT for appropriate applications.
 - □ Program standard implementations of the graph ADT.
 - ☐ Understand advantages and disadvantages of these implementations, in terms of space and run time.

