
Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 1 -

Graphs – ADTs and Implementations

ORD

DFW

SFO

LAX

80
2

1743

1843

1233

337

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 2 -

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications of Graphs
Ø Electronic circuits

q Printed circuit board

q Integrated circuit

Ø Transportation networks
q Highway network

q Flight network

Ø Computer networks
q Local area network

q Internet

q Web

Ø Databases
q Entity-relationship diagram

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 3 -

Outcomes

Ø By understanding this lecture, you should be able to:
q Define basic terminology of graphs.

q Use a graph ADT for appropriate applications.

q Program standard implementations of the graph ADT.

q Understand advantages and disadvantages of these
implementations, in terms of space and run time.

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 4 -

Outline

Ø Definitions

Ø Graph ADT

Ø Implementations

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 5 -

Outline

Ø Definitions

Ø Graph ADT

Ø Implementations

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 6 -

Edge Types
Ø Directed edge

q ordered pair of vertices (u,v)
q first vertex u is the origin
q second vertex v is the destination
q e.g., a flight

Ø Undirected edge
q unordered pair of vertices (u,v)
q e.g., a flight route

Ø Directed graph (Digraph)
q all the edges are directed
q e.g., route network

Ø Undirected graph
q all the edges are undirected
q e.g., flight network

ORD PVD

flight
AA 1206

ORD PVD

849
miles

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 7 -

Vertices and Edges
Ø End vertices (or endpoints) of

an edge
q U and V are the endpoints of a

Ø Edges incident on a vertex
q a, d, and b are incident on V

Ø Adjacent vertices
q U and V are adjacent

Ø Degree of a vertex
q X has degree 5

Ø Parallel edges
q h and i are parallel edges

Ø Self-loop
q j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder

- 8 -

Graphs
Ø A graph is a pair (V, E), where

q V is a set of nodes, called vertices

q E is a collection of pairs of vertices, called edges

q Vertices and edges are positions and store elements

Ø Example:
q A vertex represents an airport and stores the three-letter airport code

q An edge represents a flight route between two airports and stores the
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

13871743

1843

1099
1120

1233
337

2555

142

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder

- 9 -

P1

Paths

Ø Path
q sequence of alternating

vertices and edges

q begins with a vertex

q ends with a vertex

q each edge is preceded and
followed by its endpoints

Ø Simple path
q path such that all its vertices

and edges are distinct

Ø Examples
q P1=(V,b,X,h,Z) is a simple path

q P2=(U,c,W,e,X,g,Y,f,W,d,V) is
a path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 10 -

Cycles

Ø Cycle
q circular sequence of alternating

vertices and edges

q each edge is preceded and
followed by its endpoints

Ø Simple cycle
q cycle such that all its vertices

and edges are distinct (except
for its first and last vertex)

Ø Examples
q C1=(V,b,X,g,Y,f,W,c,U,a,V) is a

simple cycle

q C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U)
is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 11 -

Subgraphs

Ø A subgraph S of a graph
G is a graph such that
q The vertices of S are a

subset of the vertices of G

q The edges of S are a
subset of the edges of G

Ø A spanning subgraph of
G is a subgraph that
contains all the vertices of
G

Subgraph

Spanning subgraph

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 12 -

Connectivity

Ø A graph is connected if
there is a path between
every pair of vertices

Ø A connected component
of a graph G is a maximal
connected subgraph of G

Connected graph

Non connected graph with two
connected components

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 13 -

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 14 -

Spanning Trees

Ø A spanning tree of a connected
graph is a spanning subgraph that
is a tree

Ø A spanning tree is not unique
unless the graph is a tree

Ø Spanning trees have applications
to the design of communication
networks

Ø A spanning forest of a graph is a
spanning subgraph that is a forest

Graph

Spanning tree

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 15 -

Reachability in Directed Graphs

Ø A node w is reachable from v if there is a directed path
originating at v and terminating at w.

q E is reachable from B

q B is not reachable from E

A

C

E

B

D

F

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 16 -

Properties

Notation
|V| number of vertices

|E| number of edges

deg(v) degree of vertex v

Property 1

Σv deg(v) = 2|E|

Proof: each edge is counted
twice

Property 2
In an undirected graph with no

self-loops and no parallel
edges

|E| ≤ |V| (|V| - 1)/2

Proof: each vertex has degree
at most (|V| – 1)

Example
n |V| = 4
n |E| = 6
n deg(v) = 3

A : E ≤ V (V −1)
Q: What is the bound for a digraph?

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 17 -

Outline

Ø Definitions

Ø Graph ADT

Ø Implementations

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder

- 18 -

Main Methods of the Graph ADT

ØAccessor methods

qnumVertices(): Returns the number of vertices in the graph

qnumEdges(): Returns the number of vertices in the graph

qgetEdge(u, v): Returns edge from u to v

qendVertices(e): an array of the two endvertices of e

qopposite(v, e): the vertex opposite to v on e

qoutDegree(v): Returns number of outgoing edges

qinDegree(v): Returns number of incoming edges

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 19 -

Main Methods of the Graph ADT

ØUpdate methods
qinsertVertex(x): insert a vertex storing element x

qinsertEdge(u, v, x): insert an edge (u,v) storing element x

qremoveVertex(v): remove vertex v (and its incident edges)

qremoveEdge(e): remove edge e

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 20 -

Main Methods of the Graph ADT

Ø Iterator methods

qincomingEdges(v): Incoming edges to v

qoutgoingEdges(v): Outgoing edges from v

qvertices(): all vertices in the graph

qedges(): all edges in the graph

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 21 -

Outline

Ø Definitions

Ø Graph ADT

Ø Implementations

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 22 -

GTG Implementation (net.datastructures)

Ø There are many ways to implement the Graph ADT.

Ø We will follow the textbook implementation.

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 23 -

Vertex and Edge Lists
Ø A graph consists of a collection of vertices V and a collection of edges E.

Ø Each of these will be represented as a Positional List (Ch.7.3).

Ø In net.datastructures, Positional Lists are implemented as doubly-linked
lists.

trailerheader nodes/positions

Edges E

trailerheader nodes/positions

Vertices V
u v w z

e f g h

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 24 -

End of Lecture

Mar 22, 2018

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 25 -

Vertices and Edges
Ø Each vertex v stores an element containing information about the vertex.

q For example, if the graph represents course dependencies, the vertex element might
store the course number.

Ø Each edge e stores an element containing information about the edge.
q e.g., pre-requisite, co-requisite.

Ø In addition, each edge must store references to the vertices it
connects.

2011

3101

Prereq.
Vertex u

Vertex v

Edge e
u

v
eVertices Edge

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 26 -

Vertices and Edges
Ø To facilitate efficient removal of vertices and edges, we will make both

location aware:
q A reference to the Position in the Positional List will be stored in the element.

uVertex

prev next

Vertex Position / Node

Edge

prev next

Edge Position / Node

e

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 27 -

Edge List Implementation
Ø This organization yields an Edge List Structure

v

u

w

e g

f

e

z
h

u v w z

f g h

Vertex List

Edge List

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 28 -

Performance of Edge List Implementation
Ø Edge List implementation does not provide efficient access to edge

information from vertex list.
§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Space n + m

incomingEdges(v)
outgoingEdges(v)

m

getEdge(u, v) m

insertVertex(x) 1

insertEdge(u, v, x) 1

removeVertex(v) m

removeEdge(e) 1

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 29 -

Other Graph Implementations

Ø Can we come up with a graph implementation that
improves the efficiency of these basic operations?

q Adjacency List

q Adjacency Map

q Adjacency Matrix

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 30 -

Other Graph Implementations

Ø Can we come up with a graph implementation that
improves the efficiency of these basic operations?

q Adjacency List

q Adjacency Map

q Adjacency Matrix

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 31 -

Adjacency List Implementation
Ø An Adjacency List implementation augments each vertex element with

Positional Lists of incoming and outgoing edges.

Vertex List Adjacency Lists

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 32 -

Adjacency List Implementation
Ø An Adjacency List implementation augments each vertex element with

lists of incoming and outgoing edges.

u

v

w

a b

a

u v w

b

Vertex List

Edge List

Adjacency Lists

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 33 -

Performance of Adjacency List Implementation

Ø Adjacency List implementation improves efficiency
without increasing space requirements.

§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Space n + m n + m

incomingEdges(v)
outgoingEdges(v)

m deg(v)

getEdge(u, v) m min(deg(u), deg(v))

insertVertex(x) 1 1

insertEdge(u, v, x) 1 1

removeVertex(v) m deg(v)

removeEdge(e) 1 1

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 34 -

Other Graph Implementations

Ø Can we come up with a graph implementation that
improves the efficiency of these basic operations?

q Adjacency List

q Adjacency Map

q Adjacency Matrix

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 35 -

Adjacency Map Implementation
Ø An Adjacency Map implementation augments each vertex element with

an Adjacency Map of edges
q Each entry consists of:

² Key = opposite vertex

² Value = edge

q Implemented as a hash table.

Vertex List Adjacency Maps

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 36 -

Performance of Adjacency Map Implementation

Ø Adjacency Map implementation improves expected run
time of getEdge(u,v):

§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency
Map

Space n + m n + m n + m

incomingEdges(v),
outgoingEdges(v)

m deg(v) deg(v)

getEdge(u, v) m min(deg(u), deg(v)) 1 (exp.)

insertVertex(x) 1 1 1

insertEdge(u, v, x) 1 1 1 (exp.)

removeVertex(v) m deg(v) deg(v)

removeEdge(e) 1 1 1 (exp.)

Last Updated: Mar 22, 2018
EECS 2011

Prof. J. Elder
- 37 -

Other Graph Implementations

Ø Can we come up with a graph implementation that
improves the efficiency of these basic operations?

q Adjacency List

q Adjacency Map

q Adjacency Matrix

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder

- 38 -

Adjacency Matrix Implementation
Ø In an Adjacency Matrix implementation we map each of the n vertices to

an integer index from [0…n-1].

Ø Then a 2D n x n array A is maintained:
q If edge (i, j) exists, A[i, j] stores a reference to the edge.

q If edge (i, j) does not exist, A[i, j] is set to null.

Vertex List Adjacency Matrix

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 39 -

Adjacency Matrix Structure

u
v

w
a b

0 1 2
0 Ø Ø
1 Ø
2 Ø Øa

u v w0 1 2

b

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder

- 40 -

Performance of Adjacency Matrix Implementation
Ø Requires more space.

Ø Slow to get incoming / outgoing edges

Ø Very slow to insert or remove a vertex (array must be resized)

§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency
Map

Adjacency
Matrix

Space n + m n + m n + m n2

incomingEdges(v),
outgoingEdges(v)

m deg(v) deg(v) n

getEdge(u, v) m min(deg(u), deg(v)) 1 (exp.) 1

insertVertex(x) 1 1 1 n2

insertEdge(u, v, x) 1 1 1 (exp.) 1

removeVertex(v) m deg(v) deg(v) n2

removeEdge(e) 1 1 1 (exp.) 1

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 41 -

Outline

Ø Definitions

Ø Graph ADT

Ø Implementations

Last Updated: Mar 22, 2018
EECS 2011
Prof. J. Elder - 42 -

Outcomes

Ø By understanding this lecture, you should be able to:
q Define basic terminology of graphs.

q Use a graph ADT for appropriate applications.

q Program standard implementations of the graph ADT.

q Understand advantages and disadvantages of these
implementations, in terms of space and run time.

