Graphs — ADTs and Implementations

EECS 2011
YORKRBI 1- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Applications of Graphs

» Electronic circuits
4 Printed circuit board
U Integrated circuit

» Transportation networks
U Highway network
O Flight network

» Computer networks
O Local area network
4 Internet
d Web

» Databases

U Entity-relationship diagram

YORK ' EECS 2011

“““““““““ : Prof. J. Elder

IIIIIIIIII

brown.ed ﬁ_
[o] [ooooo0] [00

qwest.net

Last Updated: Mar 22, 2018

Outcomes

» By understanding this lecture, you should be able to:
[Define basic terminology of graphs.
L Use a graph ADT for appropriate applications.
O Program standard implementations of the graph ADT.

U Understand advantages and disadvantages of these
implementations, in terms of space and run time.

EECS 2011
YORKRBI _3- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

» Definitions
» Graph ADT

» Implementations

YORK ' EECS 2011

'''''''''' Prof. J. Elder

IIIIIIIIII

Outline

Last Updated: Mar 22, 2018

> Definitions
» Graph ADT

» Implementations

YORK ' EECS 2011

““““““““““ Prof. J. Elder

IIIIIIIIII

Outline

Last Updated: Mar 22, 2018

Edge Types

» Directed edge
U ordered pair of vertices (u,v)
O first vertex u is the origin

O second vertex v is the destination flight

_ AA 1206
d e.g., aflight @ ’@

» Undirected edge
849

miles @

U unordered pair of vertices (u,v)

d e.g., aflight route

» Directed graph (Digraph)
U all the edges are directed

U e.g., route network
» Undirected graph

U all the edges are undirected

d e.g., flight network

EECS 2011
YORKRBI _6- Last Updated: Mar 22, 2018
“““““““““ £ Prof. J. Elder

IIIIIIIIII

Vertices and Edges

» End vertices (or endpoints) of
an edge

O U and V are the endpoints of a
» Edges incident on a vertex

4 a, d, and b are incident on V
» Adjacent vertices

U U and V are adjacent

» Degree of a vertex
U X has degree 5

» Parallel edges

U h and i are parallel edges
» Self-loop

O jis a self-loop

EECS 2011
YORKRBI _7- Last Updated: Mar 22, 2018
“““““““““ £ Prof. J. Elder

IIIIIIIIII

Graphs

» A graph is a pair (V, E), where

O Vis a set of nodes, called vertices

O E is a collection of pairs of vertices, called edges

[Vertices and edges are positions and store elements
» Example:

O A vertex represents an airport and stores the three-letter airport code

O An edge represents a flight route between two airports and stores the
mileage of the route

EECS 2011
YORKRBI _8- Last Updated: Mar 22, 2018
“““““““““ £ Prof. J. Elder

IIIIIIIIII

Paths

» Path

O sequence of alternating
vertices and edges

U begins with a vertex
 ends with a vertex

U each edge is preceded and
followed by its endpoints

» Simple path

U path such that all its vertices
and edges are distinct

» Examples
4 P,=(V,b,X,h,Z) is a simple path

a P,=(U,c,W,e,X,g,Y,fW.d,V) is
a path that is not simple

EECS 2011
YORKRBI _9- Last Updated: Mar 22, 2018
“““““““““ £ Prof. J. Elder

IIIIIIIIII

Cycles

» Cycle

O circular sequence of alternating
vertices and edges

U each edge is preceded and
followed by its endpoints

» Simple cycle

U cycle such that all its vertices
and edges are distinct (except
for its first and last vertex)

» Examples

d C=(V,b,X,g,Y,f,W,c,U,a,V) is a
simple cycle

a C,=(U,c,W,e X, g,Y,f,W,d,V,a,U)
is a cycle that is not simple

EECS 2011
YORKRBI -10- Last Updated: Mar 22, 2018
“““““““““ £ Prof. J. Elder

IIIIIIIIII

Subgraphs

» A subgraph S of a graph
G is a graph such that

1 The vertices of S are a
subset of the vertices of G

 The edges of S are a
subset of the edges of G

» A spanning subgraph of
G is a subgraph that
contains all the vertices of
G

Spanning subgraph

EECS 2011
YORKRBI 11 - Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Connectivity

» A graph is connected if
there is a path between
every pair of vertices

» A connected component
of a graph G is a maximal
connected subgraph of G

YORK[JJ EECSs 201" e

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

Connected graph

O

Non connected graph with two
connected components

Last Updated: Mar 22, 2018

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

EECS 2011
YORKRBI 13- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Spanning Trees

» A spanning tree of a connected
graph is a spanning subgraph that
Is a tree

» A spanning tree is not unique
unless the graph is a tree

» Spanning trees have applications
to the design of communication
networks Graph

» A spanning forest of a graph is a
spanning subgraph that is a forest

Spanning tree

EECS 2011
YORKR ~14- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Reachability in Directed Graphs
» A node w is reachable from v if there is a directed path
originating at v and terminating at w.

1 E is reachable from B

1 B is not reachable from E

EECS 2011
YORKRBI 15 - Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

Properties

Property 1 Notation
Y. deg(v) =2|E| V] number of vertices
Proof: each edge is counted |E| number of edges
e deg(v) degree of vertex v
Property 2
In an undirected graph with no Example
self-loops and no parallel _4
edges = M=
= |E|=6
[EI< V] (V] - 1)/2 » deg(v)=3

Proof: each vertex has degree
at most (|V]-1)

Q: What is the bound for a digraph?
A: |E|<|V|(v|-1)

EECS 2011
YORKRBI 16 - Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

» Definitions
» Graph ADT

» Implementations

YORK ' EECS 2011

““““““““““ Prof. J. Elder

IIIIIIIIII

Outline

-17 -

Last Updated: Mar 22, 2018

Main Methods of the Graph ADT

» Accessor methods
dnumVertices(): Returns the number of vertices in the graph
dnumEdges(): Returns the number of vertices in the graph
dgetEdge(u, v): Returns edge fromu to v
dendVertices(e): an array of the two endvertices of e
Jdopposite(v, e): the vertex opposite to von e
doutDegree(v): Returns number of outgoing edges

dinDegree(v): Returns number of incoming edges

EECS 2011
YORKRBI 18- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Main Methods of the Graph ADT
» Update methods

dinsertVertex(x): insert a vertex storing element x
dinsertEdge(u, v, x): insert an edge (u,v) storing element x
dremoveVertex(v): remove vertex v (and its incident edges)

dremoveEdge(e): remove edge e

EECS 2011
YORKRBI _19- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Main Methods of the Graph ADT

> |lterator methods
dincomingEdges(v): Incoming edges to v
doutgoingEdges(v): Outgoing edges from v
dvertices(): all vertices in the graph

dedges(): all edges in the graph

EECS 2011
YORKRBI -20- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

» Definitions
» Graph ADT

» Implementations

YORK ' EECS 2011

““““““““““ Prof. J. Elder

IIIIIIIIII

Outline

-21-

Last Updated: Mar 22, 2018

GTG Implementation (net.datastructures)

» There are many ways to implement the Graph ADT.

» We will follow the textbook implementation.

EECS 2011
YORKRBI _22- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Vertex and Edge Lists

» A graph consists of a collection of vertices V and a collection of edges E.
» Each of these will be represented as a Positional List (Ch.7.3).

» In net.datastructures, Positional Lists are implemented as doubly-linked
lists.

(.

~N—_— = —_—— e — — — — — = —_—— e — — — — — —_——_— e — — e — —_— —

——— —_———————————

e e s e e s s e e e e e e e e e S e S e e e S e S e e S s S S e e S e e e e e e e e e e

(.

S — S g S S S S g S S S S S S PR ——e——

e f g h| |

\

YORK '_EECS'ZOTT ___________________________________

.......... Prof. J. Elder -23 - Last Updated: Mar 22, 2018

IIIIIIIIII

End of Lecture

Mar 22, 2018

EECS 2011
YORK@| EEcS20 -24- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Vertices and Edges

» Each vertex v stores an element containing information about the vertex.

O For example, if the graph represents course dependencies, the vertex element might
store the course number.

» Each edge e stores an element containing information about the edge.

O e.qg., pre-requisite, co-requisite.

» In addition, each edge must store references to the vertices it
connects.

Vertices e | Edge Edge e

Vertex v

YORK ' EECS 2011 _25.

“““““““““ : Prof. J. Elder

UUUUUUUUUU

Last Updated: Mar 22, 2018

Vertices and Edges

» To facilitate efficient removal of vertices and edges, we will make both
location aware:

1 A reference to the Position in the Positional List will be stored in the element.

—_—_———— e —— — —_—_———e— e ———

Edge Position / Node

/

| | | |

I prev next : l prev next :

| < | <
| | i |

| ' | |

\ / \ /
N v N v

Vertex <E> Edge e
EECS 2011
- 26 - Last Updated: Mar 22, 2018

Prof. J. Elder

Edge List Implementation

» This organization yields an Edge List Structure

?)<
Jls>

TV I Vertex List R

u

w 1 Z
EECS 2011

YORKRBI _27- Last Updated: Mar 22, 2018

““““““““““ Prof. J. Elder

UUUUUUUUUU

=)
—e

o——»@<— g = ° ‘

o—

(e
(

Edge List

Performance of Edge List Implementation

» Edge List implementation does not provide efficient access to edge
information from vertex list.

= n vertices, m edges

= no parallel edges EC_Ige
= no self-loops List
Space n+m
incomingEdges(v)

_ m
outgoingEdges(v)
getEdge(u, v) m
insertVertex(x) 1
insertEdge(u, v, x) 1
removeVertex(v) m
removeEdge(e) 1

YORK | EEcs20M - 28 - Last Updated: Mar 22, 2018

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

Other Graph Implementations

» Can we come up with a graph implementation that
improves the efficiency of these basic operations?

[Adjacency List
 Adjacency Map
O Adjacency Matrix

EECS 2011
YORKRBI - 29- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

Other Graph Implementations

» Can we come up with a graph implementation that
improves the efficiency of these basic operations?

U Adjacency List
U Adjacency Map
L Adjacency Matrix

EECS 2011
YORKRBI 230 - Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

Adjacency List Implementation

» An Adjacency List implementation augments each vertex element with
Positional Lists of incoming and outgoing edges.

Vertex List Adjacency Lists

v

)

—@—{e ¢

—@

EECS 2011
YORKRBI _31- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

&

Adjacency List Implementation

» An Adjacency List implementation augments each vertex element with
lists of incoming and outgoing edges.

o o
Vertex List R ‘%\{V R

r]é]u : 1]¢[w

@ G— @ \©®
(o e
Edge List

EECS 2011
YORKRBI _32- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Adjacency Lists

Performance of Adjacency List Implementation

» Adjacency List implementation improves efficiency
without increasing space requirements.

= n vertices, m edges

= no parallel edges EC_Ige Adja_cency
= no self-loops List List
Space n-+m n+m
incomingEdges(v)

i é deg(v)
outgoingEdges(v)
QEtEdQE(u, v) m min(deg(u), deg(v))
insertVertex(x) 1 1
insertEdge(u, v, x) 1 1
removeVertex(v) m deg(v)
removeEdge(e) 1 1

YORK ' EECS 2011

'''''''''' Prof. J. Elder

UUUUUUUUUU

Last Updated: Mar 22, 2018

Other Graph Implementations

» Can we come up with a graph implementation that
improves the efficiency of these basic operations?

[Adjacency List
U Adjacency Map
L Adjacency Matrix

EECS 2011
YORKRI -34- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

Adjacency Map Implementation

» An Adjacency Map implementation augments each vertex element with
an Adjacency Map of edges

O Each entry consists of:

& [8 e vE: Vertex List Adjacency Maps
< Value = edge V
O Implemented as a hash table. i vV M
..__+@_* { ¢
e g
u w
e |
VW@ TR
|
W ¥ ¥ ¥
b S o
3%
Q—L——>®——> +
&) h
YORK ' =ECS 2011 -35- Last Updated: Mar 22, 2018

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

Performance of Adjacency Map Implementation

» Adjacency Map implementation improves expected run
time of getEdge(u,v):

= n vertices, m edges
= no parallel edges Edge Adjacency Adjacency
e eBiFtE List List Map
Space n+m n+m n-+m
incomingE
ouct(;oingEj;J::((:))’ " deg(v) deg(v)
getEdge(u, v) m min(deg(u), deg(v)) 1 (exp.)
insertVertex(x) 1 1 1
insertEdge(u, v, x) 1 1 1 (exp.)
removeVertex(v) m deg(v) deg(v)
removeEdge(e) 1 1 1 (exp.)
YORK § cEosAT - 36 - Last Updated: Mar 22, 2018

Prof. J. Elder

UUUUUUUUUU

Other Graph Implementations

» Can we come up with a graph implementation that
improves the efficiency of these basic operations?

[Adjacency List
U Adjacency Map
U Adjacency Matrix

EECS 2011
YORKRBI _37- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

Adjacency Matrix Implementation

» In an Adjacency Matrix implementation we map each of the n vertices to
an integer index from [0...n-1].
» Then a 2D n x n array A is maintained:
O If edge (i, j) exists, AJi, j] stores a reference to the edge.

O If edge (i, j) does not exist, AJi, j] is set to null.

Vertex List Adjacency Matrix
01 2 3
u — 0 el g
v — 1 |e
e 8)
w — 2 g f h
VW v e 3 i
YORK ' =ECS 2011 - 38 - Last Updated: Mar 22, 2018

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

Adjacency Matrix Structure

o "o

EECS 2011
YORKRBI _39- Last Updated: Mar 22, 2018
“““““““““ Prof. J. Elder

IIIIIIIIII

Performance of Adjacency Matrix Implementation

> Requires more space.

»> Slow to get incoming / outgoing edges

»> Very slow to insert or remove a vertex (array must be resized)

= n vertices, m edges

" no parallel edges Edge Adjacency Adjacency | Adjacency
- e lithoee List List Map Matrix
Space n-+m n-+m n+m n?
o | waw | s |
getEdge(u, v) m min(deg(u), deg(v)) 1 (exp.) 1
insertVertex(x) 1 1 1 n?
insertEdge(u, v, x) 1 1 1 (exp.) 1
removeVertex(v) m deg(v) deg(v) n?
removeEdge(e) 1 1 1 (exp.) 1
YORK§ EEcs20" - 40 - Last Updated: Mar 22, 2018

||||||||| 3
vvvvvvvvvv

Prof. J. Elder

» Definitions
» Graph ADT

» Implementations

YORK ' EECS 2011

'''''''''' Prof. J. Elder

IIIIIIIIII

Outline

-4 -

Last Updated: Mar 22, 2018

Outcomes

» By understanding this lecture, you should be able to:
[Define basic terminology of graphs.
L Use a graph ADT for appropriate applications.
O Program standard implementations of the graph ADT.

U Understand advantages and disadvantages of these
implementations, in terms of space and run time.

EECS 2011
YORKR 42- Last Updated: Mar 22, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

